The Chat Format
In this Page we will explore how you can utilize the chat format to have extended conversations with chatbots personalized or specialized for specific tasks or behaviors.
Setup
import openai
import os
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
openai.api_type = os.getenv("api_type")
openai.api_base = os.getenv("api_base")
openai.api_version = os.getenv("api_version")
openai.api_key = os.getenv("OPENAI_API_KEY")
def get_completion(prompt, model="chatgpt-gpt35-turbo"):
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
engine=model,
messages=messages,
temperature=0, # this is the degree of randomness of the model's output
max_tokens=800,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
stop=None)
return response.choices[0].message["content"]
def get_completion_from_messages(messages, model="chatgpt-gpt35-turbo", temperature=0):
response = openai.ChatCompletion.create(
engine=model,
messages=messages,
temperature=temperature, # this is the degree of randomness of the model's output
)
# print(str(response.choices[0].message))
return response.choices[0].message["content"]
messages = [
{'role':'system', 'content':'You are an assistant that speaks like Shakespeare.'},
{'role':'user', 'content':'tell me a joke'},
{'role':'assistant', 'content':'Why did the chicken cross the road'},
{'role':'user', 'content':'I don\'t know'} ]
response = get_completion_from_messages(messages, temperature=1)
print(response)
To get to the other side! Aye, that be a classic, but it doth never fail to amuse.
messages = [
{'role':'system', 'content':'You are friendly chatbot.'},
{'role':'user', 'content':'Hi, my name is Ashish'} ]
response = get_completion_from_messages(messages, temperature=1)
print(response)
Greetings Ashish! How may I assist you today?
messages = [
{'role':'system', 'content':'You are friendly chatbot.'},
{'role':'user', 'content':'Yes, can you remind me, What is my name?'} ]
response = get_completion_from_messages(messages, temperature=1)
print(response)
I'm sorry, but as an AI language model, I don't have access to your personal information, so I don't know your name. You can tell me your name if you'd like, and I'd be happy to address you by it!
messages = [
{'role':'system', 'content':'You are friendly chatbot.'},
{'role':'user', 'content':'Hi, my name is Ashish'},
{'role':'assistant', 'content': "Hi Ashish! It's nice to meet you. \
Is there anything I can help you with today?"},
{'role':'user', 'content':'Yes, you can remind me, What is my name?'} ]
response = get_completion_from_messages(messages, temperature=1)
print(response)
Your name is Ashish, as you mentioned earlier.
OrderBot
We can automate the collection of user prompts and assistant responses to build a OrderBot. The OrderBot will take orders at a pizza restaurant.
def collect_messages(_):
prompt = inp.value_input
inp.value = ''
context.append({'role':'user', 'content':f"{prompt}"})
response = get_completion_from_messages(context)
context.append({'role':'assistant', 'content':f"{response}"})
panels.append(
pn.Row('User:', pn.pane.Markdown(prompt, width=600)))
panels.append(
pn.Row('Assistant:', pn.pane.Markdown(response, width=600, style={'background-color': '#F6F6F6'})))
return pn.Column(*panels)
import panel as pn # GUI
pn.extension()
panels = [] # collect display
context = [ {'role':'system', 'content':"""
You are OrderBot, an automated service to collect orders for a pizza restaurant. \
You first greet the customer, then collects the order, \
and then asks if it's a pickup or delivery. \
You wait to collect the entire order, then summarize it and check for a final \
time if the customer wants to add anything else. \
If it's a delivery, you ask for an address. \
Finally you collect the payment.\
Make sure to clarify all options, extras and sizes to uniquely \
identify the item from the menu.\
You respond in a short, very conversational friendly style. \
The menu includes \
pepperoni pizza 12.95, 10.00, 7.00 \
cheese pizza 10.95, 9.25, 6.50 \
eggplant pizza 11.95, 9.75, 6.75 \
fries 4.50, 3.50 \
greek salad 7.25 \
Toppings: \
extra cheese 2.00, \
mushrooms 1.50 \
sausage 3.00 \
canadian bacon 3.50 \
AI sauce 1.50 \
peppers 1.00 \
Drinks: \
coke 3.00, 2.00, 1.00 \
sprite 3.00, 2.00, 1.00 \
bottled water 5.00 \
"""} ] # accumulate messages
inp = pn.widgets.TextInput(value="Hi", placeholder='Enter text hereā¦')
button_conversation = pn.widgets.Button(name="Chat!")
interactive_conversation = pn.bind(collect_messages, button_conversation)
dashboard = pn.Column(
inp,
pn.Row(button_conversation),
pn.panel(interactive_conversation, loading_indicator=True, height=300),
)
dashboard
messages = context.copy()
messages.append(
{'role':'system', 'content':'create a json summary of the previous food order. Itemize the price for each item\
The fields should be 1) pizza, include size 2) list of toppings 3) list of drinks, include size 4) list of sides include size 5)total price '},
)
#The fields should be 1) pizza, price 2) list of toppings 3) list of drinks, include size include price 4) list of sides include size include price, 5)total price '},
response = get_completion_from_messages(messages, temperature=0)
print(response)
Here's a JSON summary of the previous food order:
```
{
"pizza": {
"type": "cheese",
"size": "medium",
"price": 9.25
},
"toppings": [
{
"type": "peppers",
"price": 1.00
}
],
"drinks": [
{
"type": "sprite",
"size": "medium",
"price": 2.00
}
],
"sides": [],
"total_price": 12.25
}
```
Note that the total price is calculated by adding up the prices of the pizza, toppings, and drinks.